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Table 1 Performance of trajectories
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No. Description trto Pn = 0.167 10

1
2

3

4
5

Nominal; all measurements
Optimal for ai = 0.167; all

measurements
Optimal for ai = 10; all

measurements
Nominal; measure?/
Optimalforai = 0.167;

measure y

200.0

200.46

200.69
200.0

201.67

796.1

787.2

785.0
1110

1098

5.2

5.0

5.0
7.3

6.9

8.3

8.6

8.7
159.2

159.7

603.5

601.5

580.5

569.4

24768.3

24634.9

The fixed terms are a guess at the effect of the surface rough-
ness directly below the vehicle. The noise in the control
system was assumed to have o-&

2 = 0.64 ft2-sec~4 and cr0
2 =

10~4.
The effect of the weights given to the uncertainty terms

was found by assuming them to be in the arbitrary ratio
1:160:100 and scaling them up or down together. Some
results with the full set of measurements are shown as tra-
jectories 1, 2, and 3 in Table 1. Note the small changes in
the variances. The steering programs are shown in Fig. 2.

The effects of simpler measuring equipment were found
by assuming cru and a-v to be infinite, leaving only the meas-
urement of altitude. In addition, the weight given to the
variance of horizontal velocity was set equal-to zero, since, in
the parallel field, with only y being measured, there is no way
to infer the horizontal velocity from the measurements.
The results of this are in Table 1 as trajectories 4 and 5, and
the steering programs are shown in Fig. 2.

The values of at used in the foregoing are arbitrary. To
talk in terms of overall optimization, one must find values of
at which correctly represent the trade-off between uncer-
tainty and propellant during the final descent phase. Con-
sider

m = m(ti — h, Pn)

from which

Am/m = A«i + • (l/m)(bm/bPu)APu

This is the same as A<£ if one neglects P22 and P3s and sets

Oi = (l/m)(dm/dPu)

Now, if the vehicle makes its final descent from y = 3(Pn)1/2

at velocity v*,

= md td = m

Thus

= 3md/2vd(PnY

(j) OPTIMAL, a, -J67, MEASURE. ALTITUDE.

-200 -/Qo -'60 -140 -120 -IOO -80
TIME. - SECONDS

o, = (

From the nominal trajectory, Pn = 787, md/m = -^2, and
with vd = 10 fps, ai ̂  0.00045.

Thus, for this example, unless the noise level is consider-
ably larger than assumed here, the inclusion of the statistics
is unimportant. However, the technique has been shown here
to be feasible and is now available for more sensitive situations,
such as atmospheric entry.
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Cross-Thermoelastic Phenomenon in
Heterogeneous Aeolotropic Plates

YEHUDA STAVSKY*
Israel Institute of Technology,

Technion City, Israel

THIS note is concerned with the thermoelastic stress-
strain relations in a heterogeneous aeolotropic plate theory

that is based on the Euler-Bernoulli hypothesis.
Consider a thin elastic plate of constant thickness h which

is heterogeneous in the thickness direction z. Let x, y be the

Fig. 2 Optimal steering programs
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coordinates in the undeflected bottom face of the plate (z = 0).
Assume the temperature distributions throughout the plate
to be prescribed and independent of the deformation of the
system. Denoting by e^ the elastic compliance moduli and
on the coefficients of thermal expansion of the medium, one
can write the following thermal stress-strain relations:

;* "I Vexx exy exs ax~\

'xyj L.esx esy ess as_\ Txy
T

(1)

Assume the symmetry relations exy — eyx, exs — esx, eys =
esy, and, furthermore, that

exx = exx (z) etc.

dx = ax (z) etc.
(2)
(3)

where T denotes the change in temperature from the initial,
stress-free state, being a function of both the space and time
coordinates

T = T(x,y,z,f) (4)

Following Timoshenko and Goodier's terminology,1 €x,
ey, exy. are named the actual strain components, and

€** = ex - axT etc. (5)

is the strain part due to stress. Using Eqs. (5), Eqs. (1) are
rewritten to read

[«*] = [e]lr]
Inverting Eqs. (6), one obtains

^ rExx Exy Exi A,
== I Jlii yx 1-Jyy -t-JyS •"•y

\_Esx Esy Ess As

(6)

rÛ
I €*»

IT.
where

Introducing

-[A] = [E][a]

T * — r— A T 7 T * — TIX —— IX •"•£./ Ty —— Ty

T * — r — A T 7
' xy — I xy £*-xy-L

Equations (7) are rewritten as follows:

>*] = [E][e]

(8)

(9)

(10)

Defining reference surface strains (at z = 0) and bending
curvatures, as in usual in plate theory, the following strain-
displacement relations of linear plate theory, based on the
Euler-Bernoulli hypothesis, are possible:

€x = €XQ + ZKX €y = ty° + ZKy

€Xy = exy° + ZKXy (11)

€X° = UtX 6y° = V,y €xy° = U,y + V, X (12)

Kx = ——W,XX Ky = ——W,yy KXy = ——2W,Xy (13)

Introduction of Eqs. (7) into the definitions

Nx = f h rxdz Mx = fh rxzdz (14)Jo Jo

and so on, for resultants and couples, gives a system of thermal
stress-strain relations

-[-inIB oj _K J
(15)

elastic moments of inertia are given, correspondingly, by

(AXX,BXX,DXX) = fh (l,z,z*)Exxdz,etc. (16)J o
The starred resultants and couples are defined as follows:

Nx* = Nx - Nxt Ny* = Ny - Nyt

Nxy* = Nxy- Nst

Mx* = Mx - Mxt

Mxy* = Mxy - M.t
where the quantities Nxt, Mxt are given by

(Nxt, Mxt] = (1,Z)AX Tdz, etc.

(17)
My* = My - My

(18)

(19)

Inverting the system (15) the reference surface strain
components and the plate curvatures are obtained in terms
of the starred resultants and couple

r e° i r a
L . r L r (20)

in which a, b, c, d are 3 X 3 matrices related to the symmetric
matrices A, B, D by the following relations:

(21)
(22)

(23)

(24)

[b] = - [ X ] [ Z - i ] = [cp

Id] =
where

[X] = [A~i][B]
[Y] = [5J[A-i]
[Z] = [D] - [Y][B]

(25)
(26)
(27)

Note that A, B, D, a, d are symmetric matrices but that
6, c are, generally, not symmetric matrices.

Introducing Eqs. (11-13) in Eqs. (10) and using Eqs.
(20), one finds the following expressions for the stress com-
ponents in terms of stress resultants and couples:

[r*] = [E]{((a] + z[c])[N*] + ([b] + z[d])[M*]} (28)
These expressions clearly show a cross-thermoelasticity

effect; namely, each stress component is a linear function of
all stress resultants and couples as well as of all the quan-
tities AT*«, Mit.

Equations (28) may be considered as an extension of Eqs.
(70) in Ref. 2 for the isothermal plate to the thermoelastic
plate.

Since there is a complete analogy between these two equa-
tions, one can deduce the same special classes of heterogeneity
for which the cross phenomenon vanishes.2 Such a special
case, for which all elastic moduli (Young's modulus E and
Poisson's ratio v) have the same variation through the plate
thickness, was given recently by Newman and Forray.3

Note that present results hold also for a nonlinear plate
theory that accounts for finite deflections. One then only
has to replace Eqs. (13) by

The elastic areas, the elastic statical moments, and the

€xy° = U,y + V,x + W,xW,y (29)

and all other equations remain unaltered, including the main
result (28).
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Simplification of the Shock-Tube
Equation

J. GORDON HALL* AND ANTHONY L. Russof

Cornell Aeronautical Laboratory Inc., Buffalo, N. Y.

A useful simplification of the shock-tube equation
is pointed out for shock Mach numbers exceeding
about 3. For given driver gas specific heat ratio,
shock-tube performance can be expressed explicitly
.for all initial conditions (including area change) by
a single curve. The two basic variables are the
shock strength normalized in terms of diaphragm
pressure ratio, and the diaphragm density ratio.
Universal performance curves are given in this form.
Application to tailored-interface conditions and
optimum performance of buffered tubes is
described.

THE ideal-gas shock-tube equation in terms of shock Mach
number Ms and initial conditions before diaphragm rup-

ture is1

TI + 1Mf- Ti - il-
where

Ms

Pn

g

7

1 __ (74 - I) (Ms2 - 1) _(74_1)/2T4"|274/Cy4-i)
(7i + l)A4iM. 9 J

shock speed divided by sound speed a\ ahead of
shock

Pi/Pi = initial pressure ratio (>1) across diaphragm
tti/ai = initial sound speed ratio across diaphragm
parameter accounting for tube cross-section area

change at diaphragm
specific heat ratio

Subscripts 4 and 1 denote initial states of driver and driven
gases, respectively.

The effect of an area change at the diaphragm can be
interpreted in terms of a constant-area shock tube having
initial diaphragm pressure ratio gPn and sound-speed ratio
Ang(y*~V/2j*. Appropriate values of g are given in the
literature, e.g., Refs. 1 and 2; g is unity for equal driver and
driven-tube areas and has a maximum value of about 2 for
infinite contraction ratio.

For given initial conditions of P4i, An, 74, 7i, and g, the
solution of Eq. (1) for Ms requires an iterative procedure.
Extensive graphical results therefore have been given in
previous publications, usually in the form Ms vs P4i with
An, 74, and 71 as independent parameters. A large number
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Fig. 1 Normalized shock tube performance; applicable
for Ms > 3 and arbitrary 71

of curves thus are required to represent shock tube perform-
ance over a range of A 41 values for usual combinations of 74
and 71.

The purpose of the present note is to point out that, for
Ms exceeding about 3, the approximation of neglecting 1
and (71 — I)/ 271 compared to Ms

2 enables Eq. (1) to be
put into a reduced form that greatly simplifies the inter-
pretation, graphical representation, and determination of
shock-tube performance. The reduced form of Eq. (1) is

where

and

Y = {1 - [(74 -

7 =

(2)

+
Ms X =

is the initial density ratio across the diaphragm. Thus the
reduced equation contains only one independent parameter,
74, in addition to the two variables Y and X. The variable
Y is the shock Mach number normalized in terms of the dia-
phragm pressure ratio PH. The variable X is essentially
the diaphragm density ratio F4J and therefore accounts for
the effects of both Pn and AH.

For practical purposes (to within a few percent accuracy),
the plot of shock-tube performance from Eq. (2) can be
simplified somewhat further without loss of generality by
plotting Ms/(grP4i)1/2 vs #1//TT4i, i.e., omitting the factors in
7 and X involving 71. The insensitivity to 71 (in the usual
range of /i) is suggested by the limiting behavior of M8/
(#P4i)1/2 as F4i—> 0 via AH-*- °°, and as F4i-> °° via P4i~^
oo. Three such plots of tube performance are shown in Fig.
1 for values of 74 of 1.67, 1.4, and 1.2. These curves deter-
mine Ms in convenient form for arbitrary values of P4i, AH,
71, and g. It is emphasized that the curves apply only for
Ms exceeding about 3.

All the basic aspects of ideal shock-tube performance are
made conveniently apparent by this representation. For a
given value of 74, the normalized performance, i.e., M8/
(</P4i)1/2, depends only on the diaphragm density ratio TH-
The most efficient operation for production of strong shocks,
i.e., maximum M8 for given P41, is at low values of F4i which
are obtained with large values of the sound-speed ratio AH-
Some increase in performance [i.e., M8/(gPn)11*] is obtained
with decrease in 74, but this increase becomes small at lower
values of F4i.


