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Table 1 Performance of trajectories
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No. Description ity Py Py, Py a = 0.167 a = 10
1 Nominal; all measurements 200.0 796.1 5.2 - 8.3 603.5 24768.3
2 Optimal for @, = 0.167; all
measurements 200.46 787.2 5.0 8.6 601.5
3 Optimal for a1 = 10; all
measurements 200.69 785.0 5.0 8.7 s 24634.9
4 Nominal; measure y 200.0 1110 7.3 159.2 580.5 .
5 Optimal for a; = 0.167;
measure y 201.67 1098 6.9 159.7 569.4
The fixed terms are a guess at the effect of the surface rough- or

ness directly below the vehicle. The noise in the control
system was assumed to have ¢, = 0.64 ft?-sec ™ and o =
104,

The effect of the weights given to the uncertainty terms
was found by assuming them to be in the arbitrary ratio
1:160:100 and scaling them up or down together. Some
results with the full set of measurements are shown as tra-
jectories 1, 2, and 3 in Table 1. Note the small changes in
the variances. The steering programs are shown in Fig. 2.

The effects of simpler measuring equipment were found
by assuming o, and ¢, to be infinite, leaving only the meas-
urement of altitude. In addition, the weight given to the
variance of horizontal velocity was set equal-to zero, since, in
the parallel field, with only y being measured, there is no way
to infer the horizontal velocity from the measurements.
The results of this are in Table 1 as trajectories 4 and 5, and
the steering programs are shown in Fig. 2.

The values of a; used in the foregoing are arbitrary. To
talk in terms of overall optimization, one must find values of
a; which correctly represent the trade-off between uncer-
tainty and propellant during the final descent phase. Con-
sider

m = m(ty — t, Pn)
from which
Am/m = Aty + (1/m)(@m/OPu)APy
This is the same as A¢ if one neglects Py, and Pss and sets
a; = (1/m)(Om/OPy;)

Now, if the vehicle makes its final descent from y = 3(Py) /2
at velocity vq,

Amg = ma lq = mal3(Pn)1%/v4]
Thus

bm/DPu = 3md/20d(P11)1/2
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Fig. 2 Optimal steering programs

ay = {(rha/m)[3/204(P1)V?]

From the nominal trajectory, Py, = 787, ma/m = 3%, and
with vg == 10 fps, &, =2 0.00045.

Thus, for this example, unless the noise level is consider-
ably larger than assumed here, the inclusion of the statistics
isunimportant. However, the technique has been shown here
to be feasible and is now available for more sensitive situations,
such as atmospheric entry.
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Cross-Thermoelastic Phenomenon in
Heterogeneous Aeolotropic Plates

YEHUDA STAVSEY*
Israel Institute of Technology,
Technion City, Israel

HIS note is concerned with the thermoelastic stress-
strain relations in a heterogeneous aeolotropic plate theory
that is based on the Euler-Bernoulli hypothesis.
Consider a thin elastic plate of constant thickness 4 which
is heterogeneous in the thickness direction z. Let x, y be the
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coordinates in the undeflected bottom face of the plate (z = 0).
Assume the temperature distributions throughout the plate
to be prescribed and independent of the deformation of the
system. Denoting by e;; the elastic compliance moduli and
a; the coefficients of thermal expansion of the medium, one
can write the following thermal stress-strain relations:

€ €z €ay €zs Qg I'n
€ | = | Cyz. Eyy Eys Oy Ty 1)
€ry €sz  Csy  Ess A Tzy

K

Assume the symmetry relations €., = eys, €z = €ur, €y =
€sy, and, furthermore, that

€ = €0 (2) ete. (2)
a. = a. (2) ete. 3)

where 7 denotes the change in temperature from the initial,
stress-free state, being a function of both the space and time
coordinates

T = T(zypt) @

Following Timoshenko and Goodier’s terminology,! .

€y, €4 are named the actual strain components, and
a,T ete. (5)

ex* = €5

is the strain part due to stress. Using Eqs. (5), Egs. (1) are
rewritten to read

[e*] = [e]lr] : (6

Inverting Eqs. (6), one obtains

Tz E.. Ezy es A [Ex _|
Ty = ny Eyy Eys Ay € - . (7)
Tay Esx Esy Ess As LE:yJ

i

<

where
—[A] = [E][a] 8)
Introducing
7.5 = 17, — AT =7, — AT
Toy™ = Toy — Ag,T 9
Equations (7) are rewritten as follows:
[7*] = [Elle] (10

Defining reference surface strains (at z = 0) and bending
curvatures, as in usual in plate theory, the following strain-
displacement relations of linear plate theory, based on the
Euler-Bernoulli hypothesis, are possible:

€ = €° + 2Kk, € = ¢ + 2k,
€y = €50 T+ 2Kuy (11)
€' = U, € =, € = uy+o. (12
Ko = “Wsa Ky = —W,yy Koy = —2W,zy (13)

Introduction of Eqs. (7) into the definitions

N, = ﬂh 1o

and so on, for resultants and couples, gives a system of thermal
stress-strain relations

Ll e

The elastic areas, the elastic statical moments, and the

M, = j;h TL202 (14)
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elastic moments of inertia are given, correspondingly, by
T rh
(A22,B:0,Dss) = fo (1,2,2) E.. dz, ete. (16)

The starred resultants and couples are defined as follows:
N.* =N, — N, N*=N,— N,

Nw* = Nzy_ N (17)
M.* = M, — M,, My* = M, — My,
Mxy* = Mry - Mst (18)

where the quantities N, M. are given by
A
(Nuty Ma) = j; (1,2)A, Tdz, ete. (19)

Inverting the system (15) the reference surface strain
components and the plate curvatures are obtained in terms
of the starred resultants and couple

e a b [ N
L]
k cid ] M

in which @, b, ¢, d are 3 X 3 matrices related to the symmetric
matrices 4, B, D by the following relations:

[a] = [A71] + [X][ZY][V] @1)
Bl = ~[X][Z7] = [e]r (22)
le] = —[Z1][Y] (23)
[d] = (Z-1] 24)
where
[X] = [A-1](B] 25)
[Y] = [BI[4A—] (26)
[Z] = [D] — [Y][B] @

Note that 4, B, D, a, d are symmetric matrices but that
b, ¢ are, generally, not symmetric matrices.

Introducing Eqgs. (11-13) in Egs. (10) and using Egs.
(20), one finds the following expressions for the stress com-
ponents in terms of stress resultants and couples:

[7*] = [E]{([a] + 2[eD IN*] + (o] + z[d]) [M*]} (28)

These expressions clearly show a cross-thermoelasticity
effect: namely, each stress component is a linear function of
all stress resultants and couples as well as of all the quan-
tities Nil, Mit-

Equations (28) may be considered as an extension of Egs.
(70) in Ref. 2 for the isothermal plate to the thermoelastic
plate.

Since there is a complete analogy between these two equa-
tions, one can deduce the same special classes of heterogeneity
for which the cross phenomenon vanishes.? Such a special
case, for which all elastic moduli (Young’s modulus £ and
Poisson’s ratio ») have the same variation through the plate
thickness, was given recently by Newman and Forray.?

Note that present results hold also for a nonlinear plate
theory that accounts for finite deflections. One then only
has to replace Egs. (13) by

€% = U, + Fw.? €' = v,y 1+ 3w,
& = Uyt v+ wow, (29)

and all other equations remain unaltered, including the main
result (28).
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Simplification of the Shock-Tube

Equation

J. Gorpon HanL* anp AnTHONY L. RussoT

Cornell Aeronautical Laboratory Inc., Buffalo, N. Y.

A useful simplification of the shock-tube equation
is pointed out for shock Mach numbers exceeding
about 3. For given driver gas specific heat ratio,
shock-tube performance can be expressed explicitly
for all initial conditions (including area change) by
a single curve. The two basic variables are the
shock strength normalized in terms of diaphragm
pressure ratio, and the diaphragm density ratio.
Universal performance curves are given in this form.
Application to tailored-interface conditions and
optimum performance of buffered tubes is
described.

HE ideal-gas shock-tube equation in terms of shock Mach
number M, and initial conditions before diaphragm rup-
ture is!

1 2’)’1 Y1 — 1]
— M2 — =
9P41[71+1 ’Yl+1

1 — (ya — 1)(1‘452 —_ 1) g_(74_1)/274]274/(74_1) (1)
(’Yl + DAy M,

where

M, = shock speed divided by sound speed @, ahead of
shock

Py = pi/p: = initial pressure ratio (>1) across diaphragm

Ay = as/a, = initial sound speed ratio across diaphragm

g = parameter accounting for tube cross-section area
change at diaphragm
v = specific heat ratio

Subscripts 4 and 1 denote initial states of driver and driven
gases, respectively.

The effect of an area change at the diaphragm can be
interpreted in terms of a constant-area shock tube having
initial diaphragm pressure ratio gPy and sound-speed ratio
Apg(re— 1727 Appropriate values of ¢ are given in the
literature, e.g., Refs. 1 and 2; g is unity for equal driver and
driven-tube areas and has a maximum value of about 2 for
infinite contraction ratio.

For given initial conditions of Py, Aa, vs, 1, and g, the
solution of Eq. (1) for M, requires an iterative procedure.
Extensive graphical results therefore have been given in
previous publications, usually in the form M, vs Py with
Aun, v, and v, as independent parameters. A large number
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Fig. 1 Normalized shock tube performance; applicable
for M > 3 and arhitrary v

of curves thus are required to represent shock tube perform-
ance over a range of Ay values for usual combinations of v,
and Y1.

The purpose of the present note is to point out that, for
M, exceeding about 3, the approximation of neglecting 1
and (y; — 1)/2v: compared to M2 enables Eq. (1) to be
put into a reduced form that greatly simplifies the inter-
pretation, graphical representation, and determination of
shock-tube performance. The reduced form of Eq. (1) is

Y = {1 = [(ys — 1)/ @y 2] TXV W=D (9)

where

Y = ( & )M a x = ¢/
7+ 1 (9P41)1/2 "+ 1

and
Ty = viPa/viAg?

is the initial density ratio across the diaphragm. Thus the
reduced equation contains only one independent parameter,
v4, in addition to the two variables Y and X. The variable
Y is the shock Mach number normalized in terms of the dia-
phragm pressure ratio Py. The variable X is essentially
the diaphragm density ratio I'y and therefore accounts for
the effects of both Py and 44,. ,

For practical purposes (to within a few percent accuracy),
the plot of shock-tube performance from Eq. (2) can be
simplified somewhat further without loss of generality by
plotting M./ (gPu)V? vs g1/ YTy, i.e., omitting the faectors in
Y and X involving v:. The insensitivity to 1 (in the usual
range of y;) is suggested by the limiting behavior of M,/
(gPs)"? as Ty — 0 via Ay ~> o, and as 'y = o via Py —>
. Three such plots of tube performance are shown in Fig.
1 for values of v of 1.67, 1.4, and 1.2. These curves deter-
mine M, in convenient form for arbitrary values of Py, A,
v1, and ¢g. It is emphasized that the curves apply only for
M s exceeding about 3.

All the basic aspects of ideal shock-tube performance are
made conveniently apparent by this representation. For a
given value of +i the normalized performance, ie., M,/
(gPsu)'2, depends only on the diaphragm density ratio Ii.
The most efficient operation for production of strong shocks,
i.e., maximum M, for given Py, is at low values of I'y; which
are obtained with large values of the sound-speed ratio Ay.
Some increase in performance [i.e., M,/ (gPs)V?] is obtained
with decrease in 7., but this increase becomes small at lower
values of T'y.



